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Self-assembly of cubic colloidal particles at
fluid–fluid interfaces by hexapolar capillary
interactions†

Giuseppe Soligno, *a Marjolein Dijkstrab and René van Roija

Colloidal particles adsorbed at fluid–fluid interfaces can self-assemble, thanks to capillary interactions,

into 2D ordered structures. Recently, it has been predicted by theoretical and numerical calculations

[G. Soligno et al., Phys. Rev. Lett., 2016, 116, 258001] that cubes with smooth edges adsorbed at a flat

fluid–fluid interface generate hexapolar capillary deformations that cause the particles to self-assemble

into honeycomb and hexagonal lattices, at equilibrium and for Young’s contact angle p/2. Here we

extend these results. Firstly, we show that capillary interactions induced by hexapolar deformations can

drive the particles at the interface to form also thermodynamically-stable square lattices, in addition to

honeycomb and hexagonal lattices. Then, we study the effects of tuning the particle shape on the

particle self-assembly at the interface, considering, respectively, smooth-edge cubes, sharp-edge cubes,

slightly truncated-edge cubes, and highly truncated-edge cubes. In our calculations, both capillary and

hard-particle interactions are taken into account. We show that such variations in the particle shape

significantly affect both qualitatively and quantitatively the self-assembly of the particles at the interface,

and we sum up our results in the form of temperature–density phase diagrams. For example, using typical

experimental parameters, our results show that only 4-to-5 nm sized sharp-edge and smooth-edge cubes

can self-assemble into a honeycomb lattice, while slightly and highly truncated-edge cubes can form

a honeycomb lattice only if they have a 8-to-12 and 10-to-16 nm size, respectively, for the same

experimental parameters. Also, our results show that the capillarity-induced square lattice phase is stable

only for the smooth-edge and truncated-edge cubes, but not for the sharp-edge cubes.

I. Introduction

Colloidal particles strongly adsorb at fluid–fluid interfaces,1,2

allowing the formation of stable particle monolayers at the
interface. Since a pioneering study by Pieranski,3 great interest
has been devoted to these quasi-2D particle systems,4–6 which
have many important applications, for example in coatings7–9

and for the stabilization of emulsions.10–18 Because of Young’s
Law, an adsorbed colloidal particle can generate capillary defor-
mations in the fluid–fluid interface shape, which depend on
the particle shape and surface chemistry,19–26 and on the bare
curvature of the fluid–fluid interface.27–33 Such deformations
induce capillary interactions between the adsorbed particles34,35

that can be exploited to regulate the self-assembly of the particles
while confined to the fluid–fluid interface,36–43 providing a route
to build 2D ordered structures.

For example, the realization of a honeycomb (graphene-like)
lattice with a period of a few nanometers would be extremely
important for the semiconductor properties that such a material
would have.44–46 Recent experiments47–49 have shown that cubic
nanocrystals (of roughly 5-to-10 nm size) adsorbed at fluid–fluid
interfaces can self-assemble into atomically-coherent honey-
comb structures, although the underlying mechanism is still
under investigation. While in ref. 47–49 the self-assembly is
justified using only van der Waals forces and the steric inter-
actions due to capping ligands, thereby ignoring capillary
interactions, we suggested recently on the basis of theoretical
and numerical calculations50 that capillarity is likely to be the
driving force for the observed structures.

In ref. 50 we showed that cubic colloidal particles with
smooth edges adsorbed at a fluid–fluid interface generate
hexapolar capillary deformations in the interface height profile,
when Young’s contact angle y is such that |cos y| r 0.2. Thanks
to the capillary interactions induced by such hexapoles,
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the cubes can self-assemble at the fluid–fluid interface into
thermodynamically-stable honeycomb and hexagonal lattices.
In this work, to further understand the experiments in ref. 47–49
where nanocubes with edges truncated at different levels are
used,51 we investigate the effects of tuning the shape of the cubic
particles. We consider four particle shapes, shown in Fig. 1
and defined in Appendix A: standard (i.e. sharp-edge) cubes,
smooth-edge cubes (like the ones considered in ref. 50), slightly
truncated-edge cubes, and highly truncated-edge cubes. We
show that, for a Young’s contact angle y = p/2, adsorbed
particles with any of these shapes induce a hexapolar deformation
in the fluid–fluid interface height profile. However, two major
factors are affected by varying the particle shape: the magnitude of
the hexapolar capillary deformations and the center-to-center
contact distances between the particles in the self-assembled
lattices at the interface. This, we show, significantly affects both
qualitatively and quantitatively the capillary interactions and
the self-assembly of the particles at the interface. In addition,
in this paper we prove that the hexapole-generating particles
adsorbed at the interface can self-assemble, by capillary
interactions, also in thermodynamically-stable square lattices,
while in ref. 50 only hexagonal and honeycomb lattices were
considered.

Interestingly, all the three lattices predicted here (honey-
comb, hexagonal, square) are observed in ref. 47–49 by the
nanocubes at the interface. It is important to note that the
orientation of each single nanocube at the interface – with one
cube vertex upwards with respect to the interface plane – in the
experimentally observed honeycomb and hexagonal lattices
matches with our theoretical predictions. However, the nano-
cubes in the square lattice are found lying flat at the interface in

the experiments, while we predict a vertex-up configuration
in the square lattice as well. In addition, linear aggregates of
adsorbed nanocubes – in principle compatible with either a
hexagonal or a square lattice – are also observed in the experi-
ments of ref. 47, but the claimed orientation at the interface of
the nanocubes in these linear structures is with one edge up,
and not the vertex-up configuration as we predict. Therefore,
further investigation is still required to fully understand the
systems in ref. 47–49. We point out that in this paper we
consider (mainly for length reasons) only the case y = p/2, i.e.
the cubes have the same wettability with the two fluids forming
the interface. If instead the cubes prefer to be wet by one of the
two fluids, then capillary effects may be highly affected. In
addition, van der Waals interactions between the adsorbed
nanocubes may become relevant, compared to capillary effects,
when the particles are (almost) at their contact distance, see
Appendix B. Therefore, while the long-range ordered arrange-
ment of the nanocube lattices found in ref. 47–49 is likely
driven by capillarity, the precise final orientation of each single
nanocube in the lattice may be affected also by van der Waals
interactions. As a matter of fact, the observed honeycomb
lattice in ref. 47–49 is an atomically-coherent structure where
the self-assembled cubic nanocrystals have melted in a single
crystal, clearly pointing out the existence of short-range forces
different from capillarity.

II. Method

In this section we illustrate the method used for our calculations.
We use a macroscopic model where the interface between

two non-miscible fluids is described as a 2D possibly-curved
surface. We assume the two fluids to be homogeneous and
always at equilibrium. Colloidal particles adsorbed at fluid–fluid
interfaces can generate capillary deformations in the interface
height profile, which induce interactions between the particles.
To predict such capillary interactions, we numerically calculate
the (free) energy of the fluid–fluid–particle system with respect to
the particle configuration, i.e. their positions and orientations.
From this calculation we can determine the minimum (free)
energy configuration of the system, which is its equilibrium
configuration.

To compute the energy with respect to the particle positions
and orientations we need the equilibrium shape of the fluid–
fluid interface for such particle positions and orientations. Such
an equilibrium shape is given, for a certain volume of the fluids,
by the Young–Laplace equation, with Young’s law imposed as a
boundary condition along the three-phase contact line, i.e. where
the fluid–fluid interface is in contact with the solid surface of the
particles. Young’s Law states that the angle y formed by the
fluid–fluid interface with the solid surface along the three-phase
contact line is given by

cos y � g1 � g2
g

; (1)

with g the fluid–fluid surface tension. The solid–fluid surface
tension of the particles with the two fluids, say fluid 1 and fluid 2,

Fig. 1 Sketch of the configuration (xi,yi,zi,ji,ci,ai) of the generic i-th
particle adsorbed at the fluid–fluid interface, with i = 1,. . .N and N the
total number of adsorbed particles, using as particle shape (a) a sharp-edge
cube, (b) a smooth-edge cube, (c) a slightly truncated-edge cube, and (d) a
highly truncated-edge cube, respectively. The i-th particle has center of
mass with Cartesian coordinates xi, yi, zi, an angle ji between its vertical
axis and the z axis, an internal Euler angle ci around its vertical axis, and an
azimuthal orientation ai in the z = 0 plane. The plane z = 0 corresponds to
the flat fluid–fluid interface when no particle is adsorbed. The particle
vertical axis is sketched with a red arrow in the figures. Note that j = 0
when the cube has two of its six faces parallel to the plane z = 0, and c = 0
when the cube has, for any given j, at least six of its twelve sides parallel to
the plane z = 0.
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are g1 and g2, respectively, with Young’s contact angle y being
measured inside fluid 2. Young’s Law can be proved by a simple
mechanical-equilibrium analysis,52 or with a minimum-energy
approach.53 Solving this boundary value problem to obtain the
equilibrium shape of the fluid–fluid interface is in general non-
trivial at all, because the Young–Laplace equation is a non-linear
partial differential equation of the second order to be solved with
a free boundary, as the equilibrium position of the three-phase
contact line is in principle unknown a priori. Therefore, even if a
linear approximation is applied to the Young–Laplace equation,
the analytic calculation of the energy remains unrealistic for the
problem of finding the equilibrium position of the three-phase
contact line for all possible particle positions and orientations,
and for non-trivial particle shapes.

To compute the equilibrium shape of the fluid–fluid inter-
face we use a numerical method we recently introduced53 that
easily overcomes the difficulties illustrated before. The interface
is represented by a grid of points and a Simulated Annealing
algorithm (i.e. a Monte Carlo approach) is exploited to calculate
the minimum-energy position of the grid points, given a fixed
position and orientation of the solid particles in the system as
input. As shown in ref. 53, the obtained shape is the solution of
both the Young–Laplace equation and Young’s Law, hence it is
the equilibrium shape of the fluid–fluid interface. A detailed
description of the implementation of our numerical method for
2D systems can be found in ref. 53, and details about the
implementation for 3D systems can be found in ref. 54. This
method is very well suited to study both colloidal particles
adsorbed at fluid–fluid interfaces15,50 and droplets on hetero-
geneous and curved substrates.55,56

The (free) energy EN of a system of N colloidal particles
adsorbed at a fluid–fluid interface can be written as50,53

EN(X) = g[S(X) � A + W(X) cos y], (2)

where X indicates the configuration of the particles. Each
particle, with in general an anisotropic shape, requires six
parameters to fully determine its position and orientation in 3D,
so X is a vector of 6N entries. For i = 1,. . .N, xi, yi, zi are the
Cartesian coordinates of the i-th particle center of mass, ji is the
angle of its vertical axis with the z axis, ci is the internal Euler angle
around its vertical axis, and ai is its azimuthal orientation in the
z = 0 plane, see Fig. 1. The fluid–fluid interface, when no particles
are adsorbed, is flat and coincides with the plane z = 0. The total
fluid–fluid surface area is, respectively, A when no particles are
adsorbed (so A is a constant) and S(X) when N 4 0. The total solid
surface area of the particles wet by fluid 1 is W(X), and y is Young’s
contact angle, i.e. an input parameter related to the surface
tensions in the system by eqn (1). The computed minimum-
energy fluid–fluid interface shape forms an angle (inside fluid 2)
along the three-phase contact line with the particle surface that
matches such an input parameter y. Note that in our method the
position of the three-phase contact line is automatically found by
minimizing the energy, for a given X, with respect to the fluid–
fluid interface grid point positions, i.e. it is not imposed a priori.

The energy reference level for EN [eqn (2)] is defined such
that EN = 0 when no particles are adsorbed at the interface and

all the particles are completely immersed into fluid 2. Instead
EN = NgS cos y when all the particles are immersed into fluid 1,
where S is the total surface area of a particle.

In the calculations presented in this work, all the particles
adsorbed at the fluid–fluid interface have the same shape. We
consider four different shapes: a sharp-edge cube, a smooth-edge
cube, a slightly truncated-edge cube, and a highly truncated-edge
cube, see Fig. 1. The precise definition of these four particle
shapes is reported in Appendix A.

In our numerical method, when computing the minimum-
energy shape of the fluid–fluid interface for a given particle
configuration X, we can either constrain the fluid volume to a
constant value, or let it free to vary to its minimum-energy value
for the given X. In the latter case, we should in principle add to
the energy EN [eqn (2)] the term VDP, with V the volume of one
fluid and DP a Lagrange multiplier denoting the difference
between the two fluid bulk pressures. However, in this work we
are interested in studying particles adsorbed at a fluid–fluid
interface which is flat when no particles are adsorbed, hence we
set DP = 0.

To correctly reproduce in our numerical model a flat fluid–
fluid interface far from the particles, we use a vertical solid wall
with Young’s contact angle p/2 to enclose our particle–fluid–
fluid system. This wall is placed far enough from the particles
to avoid finite-size effects, such that the particles behave as if
they are adsorbed at a fluid–fluid interface of infinite extension
and asymptotically flat far away from the particles. A different
approach is used for the calculations of Section III C, where a
periodic-lattice unit cell is reproduced in our numerical model.
Here the vertical ‘‘wall’’ enclosing the particle–fluid–fluid system
represents the boundary of the unit cell, and periodic boundary
conditions for the fluid–fluid interface height profile are imposed
at this ‘‘wall’’.

To sum up our method (see also sketch in Fig. 2), with our
Monte Carlo approach we calculate the shape of the fluid–fluid
interface that minimizes EN [eqn (2)] for a given configuration
X of the particles at the interface, obtaining the value of EN for
this X. Then, by repeating this procedure for different configu-
rations X, we determine how EN varies with respect to X.

For all the calculations shown in this work, we set cos y = 0
in eqn (2), such that we consider the case for which the
colloidal particles have equal affinity for the two fluids forming
the interface, i.e. g1 = g2. It follows that the fluid–fluid interface
at equilibrium forms an angle p/2 with the particle surfaces,
that the energy EN [eqn (2)] is minimized solely by minimizing
the fluid–fluid surface area S, and that the system is invariant
by inverting the two fluids. Since the fluid–fluid interface is
asymptotically flat and coincides with the plane z = 0 when no
particle is adsorbed, it follows that either the minimum-energy
solution for the particle configuration X and the fluid–fluid
interface shape is symmetric for z - �z, or two energetically
equivalent solutions, symmetric with respect to z = 0, exist.

Additional remarks

The gravitational energy of the fluid–fluid interface and the particle
weight are not taken into account in the energy EN [eqn (2)],

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
3 

N
ov

em
be

r 
20

17
. D

ow
nl

oa
de

d 
on

 7
/4

/2
01

8 
2:

06
:2

5 
PM

. 
View Article Online

http://dx.doi.org/10.1039/c7sm01946g


This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 42--60 | 45

as they are negligible for the experimental systems of interest
(that is, when the capillary length is much bigger than the
particle size). However, we point out that gravity effects could
be easily included in our numerical method. Since we use a
sharp fluid–fluid interface in our model, the colloidal particle
size needs to be at least a few times bigger than the diffuse
interface width, typically around 1 nm.57–59 Therefore, the
range of validity for the particle size in our model generally
lies between an upper limit of a few mm, above which gravity
may become relevant, to a lower limit of a few nm, below which
the sharp approximation for the fluid–fluid interface is too
inaccurate.79

The line tension is also neglected, as its contribution in
typical experimental systems is still unclear.60 In principle,
however, also this effect could be easily included in our model,
if a numerical value for the line tension is provided.

In affirming that the system reaches its minimum-energy
state at equilibrium, we are assuming that pinning effects on the
three-phase contact line are negligible, otherwise they would
trap the system in a metastable state, preventing it from reaching
the minimum of the energy. So, our predictions do not hold for
experimental systems where pinning is important.61 In principle,
pinning effects could be approached with our numerical method
by considering solid surfaces with roughness and/or chemical
heterogeneities, rather than smooth and homogeneous solid
surfaces, and then studying the quasi-equilibrium dynamics of
the system, but we leave this for future work.

As already mentioned, in this work we consider colloidal
particles adsorbed at fluid–fluid interfaces which are flat when
no particles are adsorbed. An interesting development for our
numerical method is to consider fluid–fluid interfaces with a
bare curvature, to verify how this affects the capillary interactions
between the particles (see e.g. the experiments in ref. 27–32). We
leave this application of our method for future studies.

In our model we assume that other possible interactions
between the adsorbed colloidal particles (e.g. electrostatic,
Casimir-like, van der Waals, etc.) are negligible when compared
to capillary interactions. In Appendix B we show that this is a
realistic approximation in several typical experimental systems
for interparticle distances exceeding a nm or so, while at shorter
distances also van der Waals forces become relevant.

In this work, we do take into account the effects of the hard-
particle interactions and configurational entropy on their self-
assembly, see Section III C, using approximate free-energy
expressions valid for hard disks to account for packing entropy,
and adding to these the capillary energy EN [eqn (2)]. We show
that such entropic effects become important if the particle size
is small enough. These results are summarized in the form of
temperature–density phase diagrams, where different capillary-
driven self-assembled phases of the adsorbed particles appear.
The temperature scale is set by the dimensionless parameter
Sg/(kBT), with S the surface area of the particle, T the tempera-
ture and kB the Boltzmann constant. Therefore, for a given
fluid–fluid surface tension g and temperature T, these phase
diagrams can be converted into a particle size-density repre-
sentation. The details of these calculations will be presented in
Section III C and Appendix D.

III. Results

In this section we present results for the adsorption and self-
assembly of colloidal particles at a fluid–fluid interface. We
consider four different shapes of the particles: sharp-edge cube,
smooth-edge cube, slightly truncated-edge cube, and highly
truncated-edge cube, see Fig. 1. The precise definition of the
particle shapes is reported in Appendix A. In all the calculations
presented here, the particle–fluid–fluid Young’s contact angle
is y = p/2.

First, in Section III A, we study the energy E1(X) [eqn (2)] of a
single-adsorbed particle at the fluid–fluid interface. We show
that, for all the four shapes considered, the particle induces at

Fig. 2 Illustrative sketch of our method. (a) A configuration X, i.e. the
particle number, positions, and orientations (see text), and Young’s contact
angle y are set as input. The blue grid shows the initial shape of the fluid–
fluid interface (also defined as input), while the black grid shows the
surface of the particles. (b) With our Monte Carlo approach, we compute
the equilibrium shape of the fluid–fluid interface (blue grid), i.e. the
solution of Young–Laplace equation with Young’s Law as boundary con-
dition. (c) From the obtained equilibrium shape of the fluid–fluid interface,
we compute the total fluid–fluid surface area S (blue grid) and the particle
surface area W wet by the fluid above the interface (red-colored part of
the particle surface), respectively. Then, EN is obtained, see eqn (2). By
repeating this procedure for different particle configurations X, the
capillarity-induced potential EN(X) is obtained. Note that in this paper we
show results only for cos y = 0, so for this particular case W is not actually
needed.
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the equilibrium a hexapolar capillary deformation in the fluid–
fluid interface height profile. Note that, as proved in ref. 53,
capillarity plays a fundamental role even for the equilibrium
configuration of a single-adsorbed cubic particle. This is impor-
tant to point out, since a common approximation when studying
the equilibrium orientation of particles at fluid–fluid interfaces
is to assume an always-flat interface, i.e. to neglect capillary
deformations.62–68

Then, in Section III B, we compute the energy EN(X) [eqn (2)]
of a periodic 2D lattice of many adsorbed particles at the fluid–
fluid interface. We show that, for all the four particle shapes
considered, at least three periodic arrangements of the particles
exist that are energetically favorable: a hexagonal lattice, a honey-
comb lattice, and a square lattice.

Finally, in Section III C, we introduce an approximated free-
energy model to study the interplay between the capillary-induced
potential EN(X) and the entropy of the particles in these periodic
lattices. As a result, we obtain a temperature–density phase
diagram for each particle shape considered.

Note that some results for smooth-edge cubes were already
presented in ref. 50, and are illustrated here in more detail.
However, the square-lattice arrangement was not taken into
account in ref. 50, while we include it in our calculations here.
In addition, we present for the first time results for the other
three cubic shapes (sharp-edge, slightly truncated-edge, highly
truncated-edge), showing that slight variations in the particle
shape affect both qualitatively and quantitatively the self-assembly
of the cubes at the fluid–fluid interface.

A. Single-adsorbed particle equilibrium configuration

In Fig. 3 we show the energy E1(X) [eqn (2)] of a single-adsorbed
particle at a fluid–fluid interface, for Young’s contact angle p/2,
and with, respectively: (a) a sharp-edge cubic shape, (b) a
smooth-edge cubic shape, (c) a slightly truncated-edge cubic
shape, and (d) a highly truncated-edge cubic shape. In the
particle configuration given by X = (x1,y1,z1,j1,c1,a1), see Fig. 1,
we can neglect the energy dependence from x1, y1, and a1,
because here we consider only one particle adsorbed at the
fluid–fluid interface (and the interface is flat when no particle is
adsorbed). Therefore, in Fig. 3 we show E1 with respect to the
particle orientations j1 and c1, and minimized over z1. Note
that, for computing the equilibrium shape of the fluid–fluid
interface to verify the dependence of E1 on z1 for each particle
configuration, we keep the fluid volume constant as set by the
plane z = 0. Our results show that, for any j1 and c1, E1 is
minimal for z1 = 0, i.e. when the particle center of mass is at the
interface level, as was expected for these particle shapes and
Young’s contact angle p/2.

The absolute value of E1 represents the binding energy
between the particle and the fluid–fluid interface, with the
E1 = 0 level representing the case when the particle is not
adsorbed at the interface. As shown in Fig. 3, at the particle
equilibrium configuration, i.e. in the minimum of E1(j1,c1), all
four particle shapes have approximately the same adsorption
energy E1 E 0.25Sg, with S the particle’s total surface area and
g the fluid–fluid surface tension. Using, for example, a typical

surface tension of g = 0.01 N m�1, it follows that Sg E 350kBT
for a sharp-edge cube of side L = 5 nm, and Sg E 1.5 � 107kBT
for a sharp-edge cube of side L = 1 mm, with T room temperature
and kB the Boltzmann constant. So, the binding energy E1 is
already of the order of tens-to-hundreds kBT for cubic nano-
particles, and becomes of the order of 106kBT for micrometer-
sized cubes.

The equilibrium configuration at the interface of the sharp-
edge cube, smooth-edge cube, and slightly truncated-edge cube
is the same, and given by z1 = 0, j1 E 0.30p and c1 E 0.25p. In
analogy with ref. 50, we call this orientation of the cube the
111 configuration, as one vertex of the cube is pointing up with
respect to the interface plane. The highly truncated-edge cube
at the equilibrium also lies in the 111 configuration, i.e. with a
vertex toward up, but slightly less tilted than the other shapes,
with z1 = 0, j1 E 0.17p and c1 E 0.25p. A second equivalent
minimum appears for the highly truncated-edge cube. The
two minima, however, correspond to the same equilibrium
111 configuration, within the numerical approximation used,
because of the symmetry of the particle shape.

All four particle shapes induce, at their equilibrium configu-
ration, a hexapolar capillary deformation in the fluid–fluid
interface height profile, i.e. three rises and three depressions.
For the sharp-edge, smooth-edge and slightly truncated-edge
cubes, this hexapolar deformation is 3-fold symmetric [see the
contour plots in Fig. 3(a)–(c)], like predicted for smooth-edge
cubes with cos y r 0.2 in ref. 50. For the highly truncated-edge
cube, the hexapolar deformation slightly loses its 3-fold sym-
metry, with one depression and one rise in the interface height
profile slightly more spread and less intense than the remaining
two rises and two depressions [see the contour plots in Fig. 3(d)].
This asymmetry, however, does not seem to have significant
effects (see ESI,† Fig. S1). Anyway, the interface height profile is
still symmetric for z -�z, as expected for Young’s contact angle
p/2. Note that the magnitude of these hexapolar deformations is
different for the various particle shapes considered. The sharp-
edge and smooth-edge cubes induce greater deformations, with
respect to the particle size, than the truncated-edge cubes, with
the highly truncated-edge cube generating significantly smaller
deformations than the slightly truncated-edge cube. This influ-
ences, both qualitatively and quantitatively, the capillary inter-
actions and self-assembly of the cubes at the fluid–fluid
interface, as shown in Sections III B and C. Note that, by staying
in the 111 orientation, the cubes minimize the total fluid–fluid
surface area S thanks to the hexapolar capillary deformation
induced in the interface. If these deformations were not
taken into account, then the 111 orientation would mistakenly
not result as the stable one, as proved for smooth-edge cubes
in ref. 50.

B. Periodic self-assembled 2D lattices

As shown in Section III A, single-adsorbed sharp-edge, smooth-
edge, slightly truncated-edge, and highly truncated-edge cubes
with Young’s contact angle p/2 generate a hexapolar deforma-
tion in the fluid–fluid interface height profile. Such a hexapolar
deformation consists of three rises and three depressions in the
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Fig. 3 Adsorption energy E1 [eqn (2)] of a single-adsorbed particle at a fluid–fluid interface, as a function of the particle orientation (j1,c1) and minimized
over z1, see Fig. 1, for: (a) a sharp-edge cube, (b) a smooth-edge cube, (c) a slightly truncated-edge cube, and (d) a highly truncated-edge cube (see exact
definitions of these particle shapes in Appendix A). Young’s contact angle is y = p/2, and the plane z = 0 corresponds to the fluid–fluid interface when no
particle is adsorbed. For any j1 and c1, the obtained minimum energy value of z1 is zero. The energy E1 is plotted in units of gS, with S the particle’s total
surface area and g the fluid–fluid surface tension (see text). In the insets, a 3D view of the fluid–fluid interface shape (blue grid) close to the particle (black
grid) is shown for the minimum-energy configuration of the particle, as computed by our numerical method. Note that the highly truncated-edge cube
(d) has two equivalent minima (i and ii) due to the particle symmetry. In the right panels we show, for the equilibrium configuration of the particles,
a contour plot of the fluid–fluid interface height profile. As shown, at the equilibrium all four particle shapes are adsorbed in the 111 configuration at the
interface (i.e. with one vertex pointing up) and they induce a hexapolar capillary deformation in the interface height profile. Note, however, that the
magnitude of these deformations varies with respect to the particle size L.
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interface height profile, disposed with 3-fold symmetry around
the particle (with the hexapole generated by the highly truncated-
edge cube slightly deviating from the exact 3-fold symmetry, see
contour plots in Fig. 3). Here we study the capillary interactions
between N - N particles adsorbed at the fluid–fluid interface
and generating such a hexapolar capillary deformation. Since
our calculations suggest that, for the systems considered here,
the single-particle equilibrium configuration is not affected by
capillary interactions, see Appendix C, Section A, we set ji, ci,
zi for each i-th particle to the values obtained in Section III A for a
single-adsorbed particle.

As shown in ref. 50, if two particles generating a hexapolar
deformation are at the interface, then they are attracted to
each other, but only for certain relative azimuthal orientations of
their hexapoles, i.e. only for certain values of a1–a2. The attractive
orientations of the two hexapoles are those that allow overlap of
capillary deformations with the same sign, that is overlap of rises
in the height profile of the fluid–fluid interface with other rises,
and overlap of depressions in the height profile of the fluid–
fluid interface with other depressions. Indeed, the fluid–fluid
surface area decreases by overlapping deformations of the same
sign, while it increases when a rise and a depression approach
each other, and, therefore, so does the energy E2 [eqn (2)].

Consequently, the two hexapole-generating particles can form two
different kinds of energetically-favorable bonds: a dipole–dipole
bond, when a rise-depression dipole of one hexapole overlaps
with a rise-depression dipole of the other hexapole, see Fig. 4(a),
and a tripole–tripole bond, when either a rise–depression–rise or a
depression–rise–depression tripole of one hexapole overlaps with,
respectively, a rise–depression–rise or a depression–rise–depres-
sion tripole of the other hexapole, see Fig. 4(b) and (c). Note that
the tripole–tripole bonds in Fig. 4(b) and (c) are different in
general. Here, however, they are energetically equivalent because
Young’s contact angle is p/2, and so the system is invariant by
inverting the two fluids. For completeness, in the ESI† (see Fig. S1)
we show, for all four particle shapes considered here, the energy
E2 with respect to the particle distance for the dipole–dipole
and tripole–tripole bonds, as computed through our numerical
method. For example, see Fig. S1 (ESI†), at a center-of-mass
distance D = 2L the pair potential per particle E2/2 � E1 is
O (�0.001Sg) for the sharp and smooth-edge cubes, and
O (�0.0001Sg) for the slightly and highly truncated-edge cubes
(with L the particle size, see Fig. 7, S the particle total surface
area, and g the fluid–fluid surface tension).

For N - N the particles generate a hexapolar capillary
deformation at the interface, and can self-assemble into 2D

Fig. 4 Here, we schematically represent a top view of the fluid–fluid interface with adsorbed cubic particles generating a hexapolar capillary
deformation (see Fig. 3). We use red and blue spots to indicate, respectively, rises and depressions in the fluid–fluid interface height profile, while the
cubic particles adsorbed in the 111 configuration, i.e. with a vertex pointing upwards, are sketched in gray (and the cube sketches refer to any of the four
particle shapes considered in Fig. 3). In (a–c) we show, respectively, a dipole–dipole bond where two blue-red dipoles interact, a tripole–tripole bond
where two blue-red-blue tripoles interact, and a tripole–tripole bond where two red-blue-red tripoles interact. Note that, as Young’s contact angle is
p/2, (b and c) are energetically equivalent. In (d and e) we sketch a honeycomb lattice where the cubes interact by the tripole–tripole bond represented in
(b and c), respectively (phase h). Hence, also (d and e) are energetically equivalent. In (f) a square lattice where the cubes interact by the three bonds in
(a–c) is sketched (phase s). In (g) a hexagonal lattice where the cubes interact by dipole–dipole bonds (a) is sketched (phase x). Note that, in phase h, each
cube has an azimuthal orientation in the interface plane shifted by p with respect to its closest neighbors. In phase s, the azimuthal orientation of the
cubes is constant along one direction of the lattice [the horizontal direction in (f)], while it is shifted by p with respect to each closest neighbor in the other
direction [the vertical direction in (f)]. In phase x, all cubes have the same azimuthal orientation in the interface plane. Particle–particle distances in the
lattice representations are only schematic. In the right panels of (d–g) we sketch (top) a representation of the dipole–dipole and tripole–tripole bonds
formed by the cubes in the lattice, and (bottom) the lattice unit cell considered in our calculations, where the color-coding at the cell sides indicates the
periodic boundary conditions we applied: sides with the same color have the same fluid–fluid interface height profile (see Appendix C, Section B, for the
precise definition of the lattice unit cells).
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periodic lattices where dipole–dipole and tripole–tripole bonds
are formed. To verify this, we calculate the (capillary) inter-
action energy per particle

~EN �
EN

N
� E1 ; (3)

where EN is given in eqn (2), for different 2D periodic lattices
of the particles, that is N - N, as a function of the particle
density. To apply our numerical method to a periodic lattice, we
consider a unit cell of the lattice, and we compute the equili-
brium shape of the fluid–fluid interface by applying periodic
boundary conditions to the interface height profile. The size of
the cell determines the particle density in the lattice. Thanks to
this approach, the many-body capillary interactions of all the
N - N particles at the interface are automatically included in
the interaction energy EN. We consider a honeycomb lattice
where each particle forms a tripole–tripole bond with each of
its three closest neighbors, called phase h and sketched in
Fig. 4(d) and (e), a square lattice where each particle forms a
dipole–dipole bond with two opposite closest neighbors and a
tripole–tripole bond with the two remaining closest neighbors,
called phase s and sketched in Fig. 4(f), and a hexagonal lattice
where each particle forms a dipole–dipole bond with each of its
six closest neighbors, called phase x and sketched in Fig. 4(g).
The unit cells for these three lattices are defined in Appendix C,
Section B.

Note that the two phases h represented in Fig. 4(d) and (e)
interchange for z -�z. Indeed, as Young’s contact angle is p/2,
either the minimum energy solution for the fluid–fluid inter-
face shape and for the particle configuration is symmetric
by inverting the two fluids, i.e. for z - �z, or, as it happens

in this case, two equivalent solutions, being one equal to the
other for z - �z, exist. As they are equivalent, in our calcula-
tions we consider only one of the two possible h phases. One
could wonder whether the honeycomb lattice of phase h is
actually just an incomplete hexagonal lattice of phase x. This is
not the case, since in phase x the particle are dipole–dipole
interacting, while in phase h they are tripole–tripole interacting.
In addition, an energy barrier exists for the particles in phase h
that frustrates the adsorption of more hexapole-generating
particles in the holes of the honeycomb lattice, and also that
prevents the tripole–tripole bonds to become dipole–dipole
bonds. This is shown in detail in Appendix C, Section C.

In Fig. 5 we show, for the various particle shapes and phases h,
s, x, the plot of ZẼN(Z), that is the interaction energy per particle
[see eqn (3)] multiplied by the normalized particle density Z,
where Z = 1 for the close-packed phase x. Here ZẼN(Z) is plotted
in units of g/dx, with dx the particle density of the close-packed
phase x (see Table 2) and g the fluid–fluid surface tension. As
shown, ZẼN(Z) decreases by increasing the particle density Z,
for each phase considered, proving that it is energetically
favorable for the particles to self-assemble into the phases h,
s and x. Although qualitatively similar, the interaction strength
ẼN of the various lattice phases is quantitatively quite different
for the four particle shapes considered, with a difference of
an order of magnitude going from the sharp-edge cube to the
highly truncated-edge cube (see also the ESI,† Fig. S2, where
we show the same results of Fig. 5, but plotting ẼN, instead of
ZẼN, in units of Sg, i.e. the same energy units used in Fig. 3).
These quantitative differences have important consequences
for the self-assembly of the particles at the interface, as we will
show in Section III C. Since ZẼN(Z) is an energy per unit area

Fig. 5 (Capillary) Interaction energy per particle ẼN [eqn (3)] with respect to the particle density Z (which is normalized such that Z = 1 for the close-
packed phase x), as computed through our numerical method for 2D periodic lattices of particles adsorbed at a fluid–fluid interface, with each particle
generating a hexapolar deformation (see Fig. 3). Green refers to a honeycomb lattice [phase h, see Fig. 4(d) and (e)], blue to a square lattice [phase s, see
Fig. 4(f)], and pink to a hexagonal lattice [phase x, see Fig. 4(g)]. The particle shape is (a) a sharp-edge cube, (b) a smooth-edge cube, (c) a slightly
truncated-edge cube, and (d) a highly-truncated edge cube (see exact definitions of these particle shapes in Appendix A). In the graphs, the squares are
the results from our numerical simulations, obtained for various particle densities, i.e. using different sizes of the lattice unit cell. The full lines represent a
fit of our numerical data, for the phases h, s, x, of the form Aa�(Z)Ba, where Aa and Ba are the fit parameters, with a = h, s, x, respectively, and their obtained
values are reported in Appendix C, Table 3. The vertical dotted lines indicate the close-packed density for the honeycomb lattice (phase h, in green), for
the square lattice (phase s, in blue), and for the hexagonal lattice (phase x, in pink). In these graphs ẼN is multiplied by the particle density Z and plotted in
units of g/dx, with dx the particle density of the close-packed phase x (see Table 2) and g the fluid–fluid surface tension. From the common tangent
construction,69 see black dotted line, it follows that at equilibrium the close-packed phase x coexists with an empty phase (i.e. a phase with Z = 0), for any
density Z of particles at the fluid–fluid interface. In the ESI,† Fig. S2, the same results are shown, but plotting ẼN, instead of ZẼN, in units of Sg, i.e. the
same energy units used in Fig. 3. Contour plots of the fluid–fluid interface height profile, for the various lattices and particle shapes, are shown in
Appendix C for different unit cell sizes (see Fig. 10).
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plotted with respect to the particle density, we can use the
common tangent construction69 to individuate where phase
coexistence occurs, obtaining, from the results of Fig. 5, that
the close-packed phase x (i.e. at Z = 1) coexists with an empty
phase (i.e. Z = 0), for any density Z of particles at the fluid–fluid
interface. So, one could conclude that, in equilibrium, the
particles at the fluid–fluid interface self-assemble into the
close-packed phase x, while the close-packed phases h and s
are only metastable states. However, as pointed out in ref. 50,
this reasoning on the basis of solely the capillary energy ẼN(Z)
is only correct if the entropy of the particles can be ignored,
which is only the case in the low-temperature or large-particle
regime, i.e. if gS/(kBT) is sufficiently large. In Section III C,
we will add the contribution of the particle entropy to the
(capillary) interaction energy ẼN(Z), showing that any of the
three phases h, s and x can be the equilibrium phase, either
alone on the whole fluid–fluid interface or phase-coexisting
with the others, by tuning the dimensionless parameter gS/(kBT)
and the particle density.

C. Temperature–density phase diagrams

As shown in Section III B, particles adsorbed at a fluid–fluid
interface generate a hexapolar capillary deformation and can
self-assemble into various 2D periodic lattices: a honeycomb
lattice [phase h, see Fig. 4(d) and (e)], a square lattice [phase s,
see Fig. 4(f)], and a hexagonal lattice [phase x, see Fig. 4(g)]. On the
basis of solely the (capillary) interaction energy per particle ẼN

[eqn (3)] of these lattices, one would conclude that at equilibrium
the particles at the interface self-assemble into the close-packed
phase x (in coexistence with an empty phase, see Fig. 5). However,
this is correct only when the particle entropy, due to the configu-
rational entropy and hard-particle interactions, is negligible. Here
we introduce an approximated model to estimate the interplay
between capillary interactions and particle entropy.

For each phase of the adsorbed particles at the fluid–fluid
interface, we write the total (free) energy F as

F(N,A,T) = EN(N,A) + FS(N,A,T), (4)

where N is the number of particles, A is the area of the flat
fluid–fluid interface when no particle is adsorbed (so A is the
total 2D volume at disposal for the particles), T is the tempera-
ture, EN [eqn (2)] is the (free) energy due to capillarity, and we
define FS as the (free) energy due to the particle entropy. In the
limit T - 0, FS goes to zero and the energy is given solely by the
capillary term, leading to the regime shown in the results of
Fig. 5, where the close-packed phase x coexists with an empty
phase, for any density N/A of the particles at the interface.
If, instead, FS(N,A,T) is not negligible, then in principle other
particle phases could occur for the given density N/A. This is
what we wish to verify here.

We consider the free energy density

f ðZ;TÞ � FðZ;TÞ �NE1

Ag
; (5)

where Z is the normalized particle density, such that Z = 1 for the
close-packed phase x, and g is the fluid–fluid surface tension.

Since f is an energy per unit area, we can use common tangent
constructions69 in the plots of f (Z) at a given T to calculate
where coexistence between different phases occurs. Note that,
for later convenience, we added an extra term �NE1/(Ag) to
f (Z,T) in eqn (5), with E1 the adsorption energy of a single-
particle. This arbitrary shift does not affect our predictions,
since this term is linear in Z, and E1 is a constant for all the
phases considered, as the single-particle configuration at the
interface is the same in all phases. Using eqn (3), it follows

f ðZ;TÞ ¼ Z ~ENðZÞ
g=dx

þ FSðZ;TÞ
Ag

; (6)

where dx is the particle density of the close-packed phase x (see
Table 2). For the h, s, and x lattice phases, we have N -N, and
in eqn (6) the term ZẼN(Z)/(g/dx) is obtained from our numerical
method, see Section III B, and shown in Fig. 5 for the various
particle shapes. We assume that a fourth disordered fluid
phase, called phase f, is also possible for the adsorbed particles
at the interface. For this phase f, we assume ẼN = 0 for any Z,
because by definition the particles have random azimuthal
orientation in the interface plane, hence there will be both
attractive and repulsive capillary interactions that on average
cancel out in a mean-field approach. Phase f approximately
represents any fluid phase without long-range positional order.
A more detailed analysis of this low-density phase should consider
the formation of small clusters of particles upon approaching the
very broad fluid-crystal coexistence.

To estimate the FS(Z,T)/(Ag) term in eqn (6) for the four
particle phases f, h, s, and x, we use analytical and numerical
results from the literature for 2D systems of hard disks. If we
were considering a pure hard-body fluid, treating our adsorbed
particles as hard disks would be, of course, a rough approxi-
mation, since the shape of the hard bodies is a key parameter.
Here, however, we are considering the interplay between capil-
lary and entropic contributions, instead of a system with only
hard interactions. So, using well-known equations for hard-disk
systems to estimate FS(Z,T) should be a fair approximation here.
Only if entropy dominates over capillarity, i.e. Sg { kBT, this
argument is not valid anymore. However, we are not interested
in this regime, since the adsorption energy of a particle at the
interface is E1 E �0.25Sg for all the particle shapes (see Fig. 3),
that is the particles are not stable anymore at the interface
already for Sg t 10kBT. In addition, to improve our model, we
add to FS(Z,T) a correction term �NkBT ln Zor to include the
rotational entropy, since in the crystal phases the particles have
a fixed azimuthal orientation in the interface plane, while hard
disks can freely rotate. The orientational partition function Zor

is calculated assuming that the particle azimuthal orientations
are constrained by a rotational spring potential, and the spring
constant, due to capillary interactions, is calculated using our
numerical method. The explicit expressions of FS(Z,T) used for
the various particle phases, and related calculations, are reported
in Appendix D.

From the plots of the free-energy density f (Z,T) [eqn (6)] of
the particle phases f, h, s, and x, with respect to Z, and at different
values of Sg/(kBT), we calculate where phase coexistence occurs
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by using common tangent constructions (see Appendix D for
details). The obtained results are summed up in the tempera-
ture–density phase diagrams in Fig. 6 for (a) sharp-edge cubes,
(b) smooth-edge cubes, (c) slightly truncated-edge cubes, and
(d) highly truncated-edge cubes. In this temperature–density
representation, the tie lines that connect the coexisting phases
are horizontal. We observe a stable fluid phase depicted in light
blue at low densities and a stable honeycomb, square and hexa-
gonal phase depicted green, dark blue and pink, respectively, at
sufficiently high densities. The two-phase regions are shown in
gray. Firstly, note that in the low temperature or big particle
regime, that is Sg/(kBT) - N, i.e. when the particle entropy is
negligible, we find that a close-packed phase x coexists with an
almost-empty phase f, in agreement with the results of Fig. 5
where particle entropy was not included. Then, by increasing
Sg/(kBT), that is by increasing the effects of particle entropy, we
find that also the lattice phases h and s can be equilibrium
phases of the particles at the interface, either as a single phase
in a tiny (almost singular) density regime, or coexisting with
other phases in a large density regime. The most interesting
result revealed by these phase diagrams is that the Sg/(kBT)
regime in which the honeycomb phase h and the square phase
s can form drastically varies by changing the particle shape. For
example, for smooth-edge and sharp-edge cubes, the interval
where the honeycomb phase h occurs is around Sg/(kBT) E
300–400, while for slightly and highly truncated-edge cubes this

interval is, respectively, around Sg/(kBT) E 800–2000 and
Sg/(kBT) E 1000–3000. This means, for example, that at a fixed
temperature and fluid–fluid surface tension, bigger particles are
necessary to form the honeycomb phase h if using truncated-
edge cubes rather than smooth-edge or sharp-edge cubes. For
instance, setting T to room temperature and the fluid–fluid
surface tension to the typical value g = 0.01 N m�1, it follows
that sharp-edge and smooth-edge cubes can self-assemble into a
honeycomb lattice only for L E 4–5 nm, while slightly and highly
truncated-edge cubes can form a honeycomb lattice only for
L E 8–12 nm and L E 10–16 nm, respectively. Note that these
experimental parameters match very well with the experiments
in ref. 47–49, where 5-to-10 nm sized nanocrystals of cubic
shape are observed to form square, hexagonal, and honeycomb
lattices at the fluid–fluid interface. The main reason for the
different Sg/(kBT) regime in which the phases h and s occur for
the different particle shapes, is in the different intensity of the
hexapolar capillary deformations, with respect to the particle
size, generated by the different particles (see Fig. 3). Another
important factor for determining the equilibrium phase of the
various particle shapes is the contact distance of the particles in
the lattices, that is the close-packed density for each phase. More
details on this are reported in Appendix D. Another important
result that emerges from Fig. 6 is that for sharp-edge cubes the
square lattice phase s is never thermodynamically stable, and
only the phases h and x are possible at equilibrium. The main

Fig. 6 Temperature–density phase diagram for adsorbed (a) sharp-edge cubes, (b) smooth-edge cubes, (c) slightly truncated-edge cubes, and
(d) highly-truncated edge cubes at a fluid–fluid interface. The left vertical axis is gS/(kBT), with g the fluid–fluid surface tension, S the total surface area of
a particle, kB the Boltzmann constant, and T the temperature (note that the low temperature or big particle limit is in the verse toward down of the vertical
axis). The right vertical axis represents the corresponding value of the particle size L (see exact definition in Appendix A) at room temperature and using a
typical surface tension g = 0.01 N m�1. The horizontal axis is the particle density Z, normalized such that Z = 1 for the close-packed x-phase. The colored
areas indicate where a pure phase exists on the whole fluid–fluid interface: light-blue for phase f (disordered phase), green for phase h (honeycomb
lattice), blue for phase s (square lattice), and pink for phase x (hexagonal lattice). The gray areas indicate where coexistence between two phases occurs,
and the red symbols mark the triple points where three phases coexist. The Young contact angle considered here is p/2, so the cubes are always
adsorbed at the interface in the 111 configuration (i.e. with a vertex toward up, see Section III A).
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reason for this seems to lie in the contact distance for the
tripole–tripole bonds between the cubes, which is much larger
than for the other shapes, although other parameters play a
role as well in this (see more details in Appendix D). Note,
however, that the hard-disk approximation used to estimate the
entropic part of the free energy F(N,A,T) [eqn (4)] is worse for the
sharp-edge cubes than for the other shapes. Using a better
approximation could induce slight variations in the phase
diagram of the sharp-edge cubes, at least for high T. Plots of
the free-energy density f [eqn (6)], with respect to the particle
density Z and for some values of Sg/(kBT), are reported for the
particle phases f, h, s, and x in the ESI,† see Fig. S3–S6, where
the common tangents we calculated are also shown.

IV. Conclusion

In this paper we have studied the capillary interactions and self-
assembly of cubic particles adsorbed at a flat fluid–fluid inter-
face. The capillary deformations and interactions of the particles
at the interface are computed using a recently introduced Monte
Carlo method53 (see results in Sections III A and B), first for a
single-adsorbed particle and then for a periodic array. Then, the
self-assembly at the interface is predicted using an approximated
free-energy model where capillarity is coupled with the particle
configurational entropy and the hard-particle interactions (see
Section III C). As a result, see Fig. 6, we obtained temperature–
density phase diagrams where different 2D lattice phases (honey-
comb, square, hexagonal) appear as thermodynamically stable
for different regimes of particle density, size, and temperature.

In particular, we have investigated the effects of slightly tuning
the cubic shape, considering sharp-edge cubes, smooth-edge
cubes, slightly truncated-edge cubes, and highly truncated-edge
cubes. We have shown that such slight variations of the particle
shape significantly affect, both qualitatively and quantitatively,
the self-assembly of the cubes at the fluid–fluid interface. These
results extend previously presented calculations50 where only
smooth-edge cubes were considered, and the capillary-induced
square lattice phase was not taken into account. This work is
a step forward into fully understanding the experiments in
ref. 47–49, where hexagonal, honeycomb and square lattices of
adsorbed nanocubes are actually observed. Interestingly, in these
works capillarity is not taken into account to justify the observed
structures, rather ligand adsorption and van der Waals forces
between specific facets of the nanocubes are suggested. Our work
strongly suggests, instead, that capillarity is the leading force
responsible for the observed structures, although we cannot
exclude that other forces may play a role as well at short
(almost-contact) particle–particle distances. In fact, our phase
diagram even features a well-defined parameter range in which
the honeycomb lattice is to be expected, and this region is
consistent with the experiments in ref. 47–49. It is important to
point out that in this work we considered only the case of Young’s
contact angle y = p/2, that is when the particles adsorbed at the
interface have the same affinity with the two fluids. In ref. 50 it is
predicted that, for cos y Z 0.3, a single-adsorbed cube at the

equilibrium lies in the flat orientation at the interface – the same
orientation observed in ref. 47–49 for the nanocubes forming a
square lattice – without generating significant capillary deforma-
tions. However, ref. 50 also shows that, for a single-adsorbed
cube, a metastable vertex-up configuration inducing a hexapolar
capillary deformation exists for cos y Z 0.3. Therefore, if
cos yZ 0.3, self-assembly into honeycomb, hexagonal and square
lattice phases could still be energetically favorable for many
adsorbed nanocubes, possibly in coexistence with phases where
the nanocubes lie flat at the fluid–fluid interface. We leave the
case y a p/2 and the verification of this hypothesis to future
work, possibly including also the case of different Young’s
contact angles associated to different facets of the cubes.

Finally, it is interesting to point out that also in other
experiments70 hexagonal lattices of 10-to-15 nm side cubes have
been observed at a fluid–fluid interface, with the cubes oriented
in the 111 configuration (i.e. vertex toward up) at the interface.
Although these experiments are complicated by the presence of
nanocubes also in the bulk of one of the fluids (while in our
model the particles are only at the fluid–fluid interface), the
observed structures at the fluid–fluid interface are in complete
agreement with our predictions based on capillary interactions.

Conflicts of interest

There are no conflicts to declare.

Appendix A: particle shapes

Here we report the exact definition of the particle shapes
considered in this paper. The sharp-edge cube, see Fig. 7(a), is,
simply, a standard cube with side L. The smooth-edge cube, see
Fig. 7(b), is defined by the super-quadratic parametric equation

px ¼ L
cosðvÞ cosðuÞj j0:1

sign½cosðuÞ cosðvÞ�; (7)

py ¼ L
sinðvÞ cosðuÞj j0:1

sign½cosðuÞ sinðvÞ�; (8)

pz ¼ L
sinðuÞj j0:1

sign½sinðuÞ�; (9)

Fig. 7 3D view of the particle surface (black grid) for the four particle
shapes considered in this work: (a) a sharp-edge cube, (b) a smooth-edge
cube, (c) a slightly truncated-edge cube, and (d) a highly truncated-edge
cube. See exact definition of these surfaces in the text.
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where sign(x) is the sign function, and (px,py,pz) are the
Cartesian coordinate of a generic point of the particle surface,
with their value determined by the input parameters u A [�p/2,p/2]
and v A [0,2p]. The slightly truncated-edge cube and highly
truncated-edge cube, see Fig. 7(c) and (d), are defined by the
polyhedron of 24 vertexes with the following Cartesian coordi-
nates, using, respectively, t = 0.75 and t = 0.50:

(tL/2,�tL/2,L/2); (�tL/2,tL/2,L/2);

(�tL/2,�tL/2,L/2); (tL/2,tL/2,L/2);

(L/2,tL/2,tL/2); (L/2,�tL/2,tL/2);

(tL/2,�tL/2,�L/2); (�L/2,tL/2,tL/2);

(�L/2,�tL/2,tL/2); (�tL/2,�L/2,tL/2);

(tL/2,L/2,tL/2); (tL/2,�L/2,tL/2);

(�tL/2,L/2,tL/2); (L/2,tL/2,�tL/2);

(L/2,�tL/2,�tL/2); (�tL/2,L/2,�tL/2);

(�L/2,tL/2,�tL/2); (tL/2,L/2,�tL/2);

(tL/2,�L/2,�tL/2); (�tL/2,�L/2,�tL/2);

(�L/2,�tL/2,�tL/2); (tL/2,tL/2,�L/2);

(�tL/2,tL/2,�L/2); (�tL/2,�tL/2,�L/2). (10)

Note that tuning the parameter t from 1 to 0 in eqn (10) is
equivalent to performing a cantellation from a sharp-edge cube
to an octahedron passing through a rhombicuboctahedron.
The slightly and highly truncated-edge cubes are cantellated
cubes closer to a cube and to a rhombicuboctahedron, respec-
tively. The total surface area of the particle surface in units of L2

is reported in Table 1 for each shape considered.

Appendix B: Casimir-like and
van der Waals interactions

To verify the accuracy of our model for the desired system, it is
important to establish whether other possible particle–particle
interactions are important compared to capillary interactions.

In this Appendix we address this point for van der Waals inter-
actions and Casimir like forces.

About van der Waals interactions, we show here that, for
typical experimental parameters, they are relevant only in the
limit of very small particles and very small (almost contact)
particle–particle distances. In Fig. 8 we show the van der Waals
potential FvdW between two spheres of diameter s � 2R, with
respect to the particle center-of-mass distance D � d + s,
calculated with a Hamaker–de Boer approach71 as

FvdWðdÞ ¼ �
A

6

2R2

d2 þ 4Rd
þ 2R2

d2 þ 4Rd þ 4R2

�

þ ln
d2 þ 4Rd

d2 þ 4Rd þ 4R2

� ��
;

(11)

for a system with Hamaker constant A = 0.15 eV, which is an
estimate for PbSe particles in an Hexane medium.72 Therefore,
this value of A holds as an order-of-magnitude estimate for the
van der Waals interactions between the nanocubes in the
experiments of ref. 47–49, while a more precise estimate should
take into account that the cubic nanocrystals are capped with
ligands and are at a hexane/air or toluene/air interface. We plot
FvdW/2 in units of Sg, where S is the sphere surface, i.e. S = ps2.
Assuming a typical fluid–fluid surface tension g = 0.01 N m�1,
it follows Sg E 76 438kBT for s = 100 nm and Sg E 764kBT for
s = 10 nm. Compared with the capillary interactions per particle
in Fig. 5 (see also Fig. S1 and S2, in the ESI,† where the energy is
expressed in units of Sg), van der Waals interactions are
completely negligible for spheres with s E 100 nm, while they
may become relevant for spheres with s E 10 nm, i.e. with a
size comparable to the nanocubes in ref. 47–49. Note, however,
that the range of the capillary interactions goes far beyond the
range of the van der Waals forces (compare Fig. 5 and 8). So, for
such experiments, capillarity seems to be the leading driving
force for the long-range order of the observed structures, while
van der Waals forces could become relevant for (almost) touching
particles.

Other particle–particle interactions that are not included in
our calculations, but could arise for adsorbed particles at fluid–
fluid interfaces, are Casimir-like forces.73–75 These interactions
are due to the thermal fluctuations (capillary waves) experienced
by the fluid–fluid interface equilibrium profile. We show here

Table 1 Total surface area S, in units of L2, of the four particle shapes
considered in this work, as computed by our numerical method where the
particle surface is tessellated by a triangular grid. With L we indicate the
particle size (see definition in the text)

Particle shape S/L2

Sharp-edge cube 6.00
Smooth-edge cube 5.65
Slightly truncated-edge cube 5.06
Highly truncated-edge cube 4.05

Fig. 8 van der Waals interaction potential FvdW between two spheres of
diameter s as a function of the center-of-mass distance D [see eqn (11)],
for a system with Hamaker constant A = 0.15 eV, in units of Sg, with g =
0.01 N m�1 and S = ps2 the sphere surface area.
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that these forces are indeed negligible compared to the capillary
interactions induced by the hexapolar deformations in the
systems considered in this work. Following ref. 76, we can
express the fluctuation-induced potential between two spheres
adsorbed at a fluid–fluid interface as

Vfluc � �kBT
R4

D4
; (12)

with R the sphere radius and D the distance between the
centers of mass of the two spheres. For a sharp-edge cube with
side L and total surface area S adsorbed at a fluid–fluid inter-
face with surface tension g, we can use R E L/2 to rewrite this
expression, as an order-of-magnitude estimate, as

Vfluc

Sg
� �kBT

Sg
L4

16D4
: (13)

Using for example kBT/Sg E 350, which corresponds to about
the middle of the honeycomb-hexagonal phase-coexistence area
in the phase diagram of Fig. 6(a), and D = 1.5L, i.e. almost the
contact distance for the cubes, we obtain Vfluc E 0.000035Sg,
which is definitely negligible compared to the (capillary) inter-
action energy per particle ẼN shown in Fig. 5 for the various
particle lattice phases (see also Fig. S1 and S2, in the ESI,†
where the energy is expressed in units of Sg).

Appendix C: additional information on
the 2D periodic lattices of the particle
phases h, s, x
A. On the single-particle equilibrium configuration

Here we verify whether the particle equilibrium configuration
computed in Section III A for a single-adsorbed particle
changes or not when the particle experiences capillary inter-
actions with other particles. We consider, see Fig. 9, two almost-
touching tripole–tripole interacting particles, and we set the
particle configuration zi, ci, ji, with i = 1, 2 (see Fig. 1), to the
equilibrium values found in Section III A for a single-adsorbed
particle. Then, in Fig. 9 we report how E2 [eqn (2)] behaves by
varying, respectively, z1, c1, and j1. As shown in the plots, the
minimum energy value of each of these parameters coincides
with the value found in Section III A for a single-adsorbed
particle. Hence, these results indicate that capillary interactions
do not affect significantly the equilibrium configuration of the
particles, at least for the systems considered here, where
Young’s contact angle is p/2. Therefore, in the lattice phases h,
s and x defined in Section III B we can assume that zi, ci, ji for
each i particle are the same as computed for a single-adsorbed
particle in Section III A. In Fig. 9 we considered only smooth-
edge cubes and highly truncated-edge cubes, since the same
results reasonably apply for the remaining two particle shapes.
These results give also an idea of the strength of the capillary
forces keeping the particles in their equilibrium configuration.
Note that, in the numerical calculations for the equilibrium
shape of the fluid–fluid interface considered here, the fluid
volume was set constant (and given by the fluid–fluid interface

when coinciding with the plane z = 0), since the single-particle
equilibrium configuration was in principle unknown, and so we
needed to study the energy dependence from the particle center
of mass height at the interface.

B. On the definition of the lattice unit cells

We define here the lattice unit cell and the particle configuration
X (see Section II) for the particle phases h, s, and x defined in
Section III B.

For phase h, the unit cell [see sketch in Fig. 4(d) and (e)] is a

rectangle with vertexes of Cartesian coordinates �D
ffiffiffi
3
p

=2; 3D=4
� �

,

D
ffiffiffi
3
p

=2; 3D=4
� �

, �D
ffiffiffi
3
p

=2;�3D=4
� �

, and D
ffiffiffi
3
p

=2;�3D=4
� �

, in
the z = 0 plane. Periodic boundary conditions are applied to the

cell sides: the half-side from �D
ffiffiffi
3
p

=2;�3D=4
� �

to (0,�3D/4)

Fig. 9 Energy E2 [eqn (3)] for two tripole–tripole interacting particles, with
respect to the configuration of a single particle, in units of Sg (with S the
total surface area of a particle and g the fluid–fluid surface tension). We
consider (a) two smooth-edge cubes with configuration z1 = z2 = 0, c1 =
c2 = p/4, j1 = j2 = 0.3p, a1 = 0, a2 = p and (b) two highly truncated-edge
cubes with configuration z1 = z2 = 0, c1 = c2 = p/4, j1 = j2 = 0.17p, a1 = 0,

a2 = p (see Fig. 1). The center-of-mass distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2þ y1 � y2ð Þ2

q
between the two particles is in (a) D = 1.6L and in (b) D = 1.35L, so in both
cases D only slightly exceeds the contact distance. Young’s contact angle is
p/2. We plot E2, as computed by our numerical method, obtained by varying,
respectively, z1, c1, and j1. As shown, the equilibrium values for z1, c1, and j1

are the same found for a single-adsorbed particle in Section III A, even if
here there are two interacting particles. In (c and d) we show a contour plot
of the interface height profile when z1, c1, and j1 are at the equilibrium for
the two tripole–tripole interacting particles considered in (a) and (b),
respectively. The plane z = 0 corresponds to the fluid–fluid interface when
no particle is adsorbed.
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has the same fluid–fluid interface height profile of the half-side

from (0,3D/4) to D
ffiffiffi
3
p

=2; 3D=4
� �

, the half-side from (0,�3D/4)

to D
ffiffiffi
3
p

=2;�3D=4
� �

has the same fluid–fluid interface height

profile of the half-side from �D
ffiffiffi
3
p

=2; 3D=4
� �

to (0,3D/4), and

the two remaining opposite sides of the cell have the same
fluid–fluid interface height profile. In the cell there are N = 2
particles with configuration (xi,yi,ai), for i = 1, 2, given by

�D
ffiffiffi
3
p

=4;�D=4; p=2� p=2
� �

and �D
ffiffiffi
3
p

=2;D=4; p=2	 p=2
� �

,

where the sign choice determines whether we are considering
the phase h in Fig. 4(d) or the energetically equivalent phase h
in Fig. 4(e).

For phase s, the unit cell [see sketch in Fig. 4(f)] is a
rectangle with vertexes of Cartesian coordinates (�Dd/2,�Dt),
(Dd/2,�Dt), (Dd/2,Dt), and (�Dd/2,Dt) in the z = 0 plane. Periodic
boundary conditions are applied to the cell sides: opposite sides
of the square cell have the same fluid–fluid interface height
profile. In the cell there are N = 2 particles with configuration
(xi,yi,ai), for i = 1, 2, given by (0,�Dt/2,0) and (0,Dt/2,p).

For phase x, the unit cell [see sketch in Fig. 4(g)] is a hexagon
in the z = 0 plane with vertexes of Cartesian coordinate (0,�D),

(0,D), �D
ffiffiffi
3
p

=2;�D=2
� �

, D
ffiffiffi
3
p

=2;�D=2
� �

, �D
ffiffiffi
3
p

=2;D=2
� �

, and

D
ffiffiffi
3
p

=2;D=2
� �

. Periodic boundary conditions are applied to the

cell sides: opposite sides of the hexagonal cell have the same
fluid–fluid interface height profile. In the cell there is N = 1
particle with position and orientation (x1,x2,a1) given by (0,0,0).

The remaining degrees of freedom for the particle configu-
ration in each lattice unit cell (i.e. ji, ci, zi, with i = 1, 2 for
phases h and s, and i = 1 for phase x) are fixed by the values
found in Section III A for a single-adsorbed particle. Note that,
for each i-th particle in the lattice phases, its ai = 0 orientation
is when the line corresponding to the particle vertical axis,
see Fig. 1, is parallel to the x = 0 plane and with non-negative
derivative in y.

In the lattice unit cell of the phases h and x, the parameter D
is the center-of-mass distance between two closest-neighbor
particles of the lattice. In the lattice unit cell of the phase s, the
parameters Dd and Dt are the center-of-mass distances between
two closest neighbor particles in the dipole–dipole bond direc-
tion of the lattice and in the tripole–tripole bond direction of
the lattice, respectively (see Fig. 4). By tuning D for the phases h
and x, and Dd, Dt for the phase s, we regulate the lattice spacing,
and therefore the particle density in the lattice. The normalized

particle density Z is given by Z ¼ 4
	

3
ffiffiffi
3
p

D2dx
� �

for the phase h,

Z = 1/(DdDtdx) for the phase s, and Z ¼ 2
	 ffiffiffi

3
p

D2dx
� �

for the

phase x, where dx is the density N/A (with N number of particles
and A area) of the phase x lattice unit cell when the particles are
at their contact distance, see Table 2. The values we estimated
for the particle contact distances in the phases h, s, and x are
reported in Table 2, for the various particle shapes. Note that,
for the square lattice (phase s), the contact distance value for
Dd, i.e. Ddc, is smaller than the contact distance value for Dt, i.e.
Dtc, for any particle shape (see Table 2). Therefore, we use a
square lattice unit cell, i.e. Dd = Dt, when Dt Z Dtc. Instead, for
higher particle densities, we use a rectangular cell with Dt = Dtc

and Ddc o Dd o Dtc. We verified that using a rectangular unit
cell, rather than square, also for lower particle densities does
not affect our results, see ESI,† Fig. S7.

C. On the capillary interaction energy

For the various particle phases and shapes, in Fig. 5 we showed
ZẼN(Z), where ẼN is the (capillary) interaction energy [eqn (3)]
and Z the normalized particle density (such that Z = 1 for the
close-packed phase x). The numerical data we obtained for
ZẼN(Z), for the phases h, s, x, were fitted with Aa�(Z)Ba, where Aa

and Ba are the fit parameters (with a = h, s, x, respectively for
each phase). The values we obtained are reported in Table 3. In
Fig. 10 we show the contour plot of the interface height profile,
as obtained from our numerical method, in the unit cell of the
phases h, s, and x, for different sizes of the cell and for the
various particle shapes.

Concerning the numerical calculations for the equilibrium
shape of the fluid–fluid interface in the results of Fig. 5, the
initial volume of the fluids was set by the interface level when
coinciding with the plane z = 0. Then, during the Monte Carlo
simulations to find the interface equilibrium shape, the volume
was not constrained to be constant (so it was free to evolve to its
minimum energy value). However, since the center of mass
height zi for each i particle was set to its minimum energy value

Table 2 Estimated value of the center-of-mass distance, in units of the
particle size L (defined in Appendix A), for touching particles in the lattice
phases h, s and x, where Dtc is the contact distance between two closest-
neighbor particles in the lattice phase h and between two closest neighbor
particles in the tripole–tripole bond direction of the lattice phase s, and Ddc

is the contact distance between two closest-neighbor particles in the
lattice phase x and between two closest neighbor particles in the dipole–
dipole bond direction of the lattice phase s. The close-packed density N/A
(with N number of particles and A area) for the unit cells of the three lattice
phases h, s, and x, is dh ¼ 4

	
3
ffiffiffi
3
p

Dtc
2

� �
, ds = 1/(DdcDtc), and dx ¼ 2

	 ffiffiffi
3
p

Ddc
2

� �
,

respectively, and is reported here in units of S�1, with S the particle total
surface area. The particle shape is (a) a sharp-edge cube, (b) a smooth-
edge cube, (c) a slightly truncated-edge cube, and (d) a highly-truncated
edge cube

Dtc/L Ddc/L dhS dsS dxS

(a) 1.63 1.42 1.724 2.580 3.431
(b) 1.55 1.40 1.810 2.604 3.329
(c) 1.43 1.24 1.918 2.864 3.800
(d) 1.17 1.15 2.276 3.008 3.534

Table 3 With respect to the results shown in Fig. 5, we show here the
values of the fit parameters Aa and Ba (a = h, s, x), obtained by fitting ZẼN(Z)
with Aa(Z)Ba, for the particle lattice phases h, s, x, and for (a) sharp-edge
cubes, (b) smooth-edge cubes, (c) slightly truncated-edge cubes, and (d)
highly-truncated edge cubes. The subscripts h, s, and x indicates the
particle phase in which ẼN(Z) was computed, g is the fluid–fluid surface
tension, and dx is the particle density for the close-packed phase x (see
Table 2)

dxAh/g Bh dxAs/g Bs dxAx/g Bx

(a) �0.4052 4.1171 �0.1592 3.8466 �0.1141 3.6701
(b) �0.2062 3.6879 �0.1213 3.6709 �0.0773 2.9911
(c) �0.1151 3.9437 �0.0477 3.8577 �0.0275 3.2012
(d) �0.0350 3.9222 �0.0206 4.3770 �0.0150 4.1576
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zi = 0 (as proved for a single-adsorbed particle in Section III A
and for interacting particles in Section A of this Appendix), the
initial fluid volume we set is also the minimum-energy volume,
so constraining the volume to remain constant in our simula-
tions would have made no difference for the computed inter-
face equilibrium shape. The same argument applies for the
calculations in the next section and in Fig. 12 of Appendix D.

D. On the (meta)stability of the honeycomb lattice

While the square lattice (phase s) is clearly different from the
hexagonal and honeycomb lattices (phases x and h), one could
wonder whether the honeycomb lattice of the phase h is just an
incomplete hexagonal lattice of the phase x, i.e. whether the
capillary energy per particle of the honeycomb lattice can be

lowered just by adding another particle in each honeycomb
‘‘hole’’. Here we show that this is not the case and the honey-
comb lattice of the phase h is (at least locally) stable from
evolving into an hexagonal lattice, even in the limit of negligible
particle entropy. For these calculations, we consider only smooth-
edge cubes, since the same results reasonably apply, at least
qualitatively, for the other cubic particle shapes.

In Fig. 11(a) we consider a unit cell of the honeycomb lattice
of the phase h (see definition in Section B of this Appendix),
where the equilibrium azimuthal orientations a1 and a2 of the
two particles are shifted by +o and �o, respectively. In the plot,
we show the interaction energy per particle ẼN [eqn (3)] with

Fig. 10 Contour plot of the fluid–fluid interface height profile, as obtained
by our numerical method, in a unit cell of the particle lattice phase h, s, and x
(from left to right, respectively). The particle shape used is (a) a sharp-edge
cube, (b) a smooth-edge cube, (c) a slightly truncated-edge cube, and (d) a
highly-truncated edge cube. Note that periodic boundary conditions are
applied to the lattice unit cells, as described in the text (see also sketches in
Fig. 4). Each lattice unit cell is shown for a given particle density Z, where
Z = 1 corresponds to the close-packed phase x. The plane z = 0 corre-
sponds to the fluid–fluid interface when no particle is adsorbed. The particle
size L is defined in Appendix A.

Fig. 11 (a) Interaction energy ẼN [eqn (3)] for the honeycomb lattice of
phase h (see definition in Section B of this Appendix), where the equili-
brium azimuthal orientations a1 and a2 of the two particles are shifted by
+o and �o, respectively. The energy is plotted in units of Sg, with S the
total surface area of one particle and g the fluid–fluid surface tension. The
particle density in the lattice is Z = 0.38. The different colored arrows,
corresponding to different o, indicate the different phases in which the
lattice evolves by tuning o. Starting from a honeycomb lattice with
depression–rise–depression tripole–tripole interactions at o = 0 (green
arrow), we obtain a honeycomb lattice with dipole–dipole interactions at
o = p/6 (light-blue arrow), then a honeycomb lattice with rise–depres-
sion–rise tripole–tripole interactions at o = 2p/6 (orange arrow), then
again to a honeycomb lattice with dipole–dipole interactions at o = 3p/6
(light-blue arrow), and so on. A contour plot of the fluid–fluid interface
height profile in the lattice cell for o = 0 (i) and o = p/6 (ii) is shown in
the insets. (b) Graphical representations of the various phases in which
the honeycomb lattice evolves, where the red/blue spots indicate rises/
depressions in the fluid–fluid interface height profile, and the cubes are
sketched in gray. (c) Interaction energy per particle ẼN [eqn (3)] with
respect to the center of mass particle distance D for, respectively, six
and seven particles with configuration as described in the text. In the insets
we show, for both cases, a contour plot of the fluid–fluid interface height
profile for D = 1.65L.
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respect to o. As indicated by the colored arrows and the sketches
in Fig. 11(b), by increasing o, i.e. by rotating the particle
azimuthal orientations in opposite directions (clockwise for one
particle, and counterclockwise for the other), we shift from a
honeycomb lattice with depression–rise–depression tripole–
tripole interactions, to a honeycomb lattice with dipole–dipole
interactions, then to a honeycomb lattice with rise–depression–
rise tripole–tripole interactions, then again to a honeycomb
lattice with dipole–dipole interactions, and so on. The honey-
comb lattice with dipole–dipole interactions is actually the
hexagonal lattice of phase x, but with half of the particles
removed to form a honeycomb. So, it can further reduce its
energy per particle by filling the holes in the lattice with particles.
Instead, the honeycomb lattice with tripole–tripole interactions is
the actual phase h. As shown, the energy ẼN reaches a minimum
when the particles are in the phase h configuration, while is
maximum when they are in the incomplete phase x configu-
ration, therefore (locally) preventing the phase h to evolve in a
configuration that is unstable toward evolving into the phase x.
Since in these calculations only capillarity is taken into account,
and particle entropy is not included, this holds in the low
temperature or big particle regime. If particle entropy is impor-
tant, then as shown in Section III C the honeycomb lattice of
phase h can become not only locally but also globally stable.
Finally, in Fig. 11(c) we show that for a honeycomb lattice of the
phase h, i.e. with tripole–tripole interacting cubes, it is energeti-
cally unfavorable to adsorb additional cubes in the honeycomb
holes. Here we show the interaction energy per particle Ẽ6 and
Ẽ7, with respect to the particle distance, for, respectively, six
particles with configuration (xi,yi,ai), for i = 1,. . .6, given by

�D=2;
ffiffiffi
3
p

D=2; p
� �

, D=2;
ffiffiffi
3
p

D=2; 0
� �

, (D,0,p), D=2;�
ffiffiffi
3
p

D=2; 0
� �

,

�D=2;�
ffiffiffi
3
p

D=2; p
� �

, (�D,0,0), and seven particles with configu-
ration (xi,yi,ai), for i = 1,. . .6, given as before and for i = 7 given
by (0,0,p). For each particle i, the values of zi, ci, ji are the same
as found in Section III A for a single-adsorbed particle. In both
cases, the six external particles [see Fig. 11(c)] interact with one
another by tripole–tripole interactions, i.e. as in the phase h. As
shown, at least for small particle distances, Ẽ6 is lower than Ẽ7,
proving that for the phase h it is energetically unfavorable to
adsorb additional cubes in the honeycomb holes. The reason is
that the tripole–tripole interacting cubes of phase h generate
a multi-particle interaction of capillary deformations with the
same sign in the honeycomb holes, frustrating the addition of
another hexapole-generating cube.

Appendix D: free-energy calculations
for the phase diagrams

Here, we report the explicit expressions used to estimate the
term FS(Z,T)/(Ag) in the free energy density f (Z,T) [see eqn (6)]
defined in Section III C, for all the particle phases f, h, s, and x.
The particle density Z is normalized such that Z = 1 for the
close-packed phase x, A is the fluid–fluid interface total area
when no particle is adsorbed, g is the fluid–fluid surface
tension, and T is the temperature.

For the four particle phases, respectively f, h, s, and x,
we assume

F(f)
S (N,A,T) E Ffhd(N,A,T), (14)

F(h)
S (N,A,T) E Ffhd(N,A,T) � NkBT ln Z(h)

or , (15)

F(s)
S (N,A,T)E Ffhd(N,A,T) � NkBT ln Z(s)

or , (16)

F(x)
S (N,A,T) E Fxhd(N,A,T) � NkBT ln Z(x)

or . (17)

where Ffhd and Fxhd are the free energy of, respectively, a fluid
and a crystal of N hard disks in a 2D volume of area A and at a
temperature T, kB is the Boltzmann constant, Zor is the orienta-
tional partition function (defined later), and the superscripts
‘‘(f)’’, ‘‘(h)’’, ‘‘(s)’’, and ‘‘(x)’’, indicate to which phase FS and
Zor refer.

From scaled-particle theory77 we have

FfhdðN=A;TÞ
AkBT

¼ N

A
ln

N

A
O

� �
� 1

� �
�N

A
ln 1�N

A
O

� �

þ tN=Að Þ2

4pð1� ON=AÞ;

(18)

where O and t are the hard disk area and perimeter, respectively.
The first term in eqn (18) is the entropic ideal-gas contribution,
and the rest is due to the hard-disk interactions. In our approxi-
mated model, O and t for the adsorbed particles are estimated as
the area and perimeter of the polygon obtained by projecting the
particle in its equilibrium configuration on the plane z = 0 (see
obtained values in Table 4).

From the numerical results in ref. 78 we obtain

FxhdðN=A;TÞ
AkBT

¼ N

A
2:73 lnðZÞ � 2 lnð1� ZÞ½

þ 2:33

Z
� 0:75

Z2
� 1:475

�
;

(19)

where the normalized particle density Z is 1 for the close-
packed phase x, and eqn (19) is accurate for Z \ 0.79, for
hard-disks.

In the three lattice phases h, s, and x, each particle i has a
fixed azimuthal orientation ai in the interface plane, while,
instead, hard disks can freely rotate. To take this into account
in FS(Z,T)/(Ag), we add the (free) energy �NkBT ln Zor due to
the azimuthal orientation of the particles. The one-particle

Table 4 Area O and squared perimeter t2 of the polygon obtained
projecting, on the plane z = 0, the particle adsorbed at the interface in
its equilibrium configuration, for the various particle shapes considered
(with S the total surface area of the particle). To give an idea of the
approximations involved in our model, where the adsorbed particles are
treated as hard disks when estimating their hard interactions, in the last
column we show O/t2, that for a hard disk would be 0.080 (with third-digit
precision)

Particle shape O/S t2/S O/t2

Sharp-edge cube 0.296 4.101 0.072
Smooth-edge cube 0.276 3.834 0.072
Slightly truncated-edge cube 0.265 3.667 0.072
Highly truncated-edge cube 0.243 3.365 0.072
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orientational partition function Zor is defined assuming that
the energy cost for a particle to rotate by o from its equilibrium
azimuthal orientation ai is

UðoÞ � CðZÞo
2

2
; (20)

where the potential U(o) is due to the capillary interactions
of the particles in the lattices. Therefore, the rotational spring
constant C depends on the lattice density Z. We use our numerical
method to calculate U(o) for some values of Z, and different
particle shapes, and from it we fit the value of C for each value
of Z considered. Then, from the obtained values of C, we fit an
expression for C(Z). The results for the particle phases h, s, and x,
and for the various particle shapes, are shown in Fig. 12. Writing
explicitly Zor, we have

Zor ¼
3

2p

ðp=3
�p=3

e�UðoÞ=kBTdo

¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

pCðZÞ

s
Erf

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

CðZÞ
kBT

s !
;

(21)

where Erf(x) is the ‘‘error function’’. In eqn (21), the factor 3
and the integration between [�p/3,p/3] takes into account that
there are three equivalent minimum-energy azimuthal orienta-
tions, which are ai, ai + 2p/3, and ai + 4p/3.

We rewrite the expressions for FS(Z,T)/(Ag) for the various
particle phases [eqn (14)–(17)] with respect to the dimension-
less parameter Sg/(kBT), using kBTN/(Ag) = dxSZkBT/(Sg), where
S is the particle total surface area, and dx is the particle density
of the close-packed phase x and is reported in units of S�1 in

Table 2 for the various particle shapes. Then, we plot for each
phase the free energy density f (Z,T) [eqn (6)] with respect to the
particle density Z and for different values of Sg/(kBT). Using
common tangent constructions69 between the free energy den-
sity plots of the different particle phases, we find the particle
density values where phase coexistence occurs, for each value of
Sg/(kBT) considered. The results for each particle shape are
shown in the temperature–density phase diagrams in Section III C.
In the ESI,† see Fig. S3–S6, we show, for all the particle shapes,
the plots of f (Z,T) for the various particle phases and for some
values of Sg/(kBT), highlighting the common tangents we
calculated.

To further illustrate that the approximations used to estimate
the particle entropy in our model do not significantly affect the
results, in the ESI† we show, see Fig. S8 (ESI†), the temperature–
density phase diagram, for the smooth-edge cubes, as obtained
using the crystal hard disk free energy Fxhd [eqn (19)] instead of

Fig. 12 Rotational spring constant C for the particle phase h (green), s (blue) and x (pink), and for (a) a sharp-edge cube, (b) a smooth-edge cube, (c) a
slightly truncated-edge cube, and (d) a highly-truncated edge cube. For the phase h, we consider a lattice unit cell (see Appendix C) where the azimuthal
orientation a1 of the first particle is shifted by o from its equilibrium value, while the second particle orientation is kept at its equilibrium value a2, and we
use our numerical method to compute EN [eqn (2)] with respect to o, for various Z. For the phases x and s we proceed analogously, but considering,
respectively, seven particles with configuration (xi,yi,ai), for i = 1,. . .7, given by �D=2;

ffiffiffi
3
p

D=2; 0
� �

, D=2;
ffiffiffi
3
p

D=2; 0
� �

, (D,0,0), D=2;�
ffiffiffi
3
p

D=2; 0
� �

,

�D=2;�
ffiffiffi
3
p

D=2; 0
� �

, (�D,0,0), (0,0,o), and nine particles with configuration (xi,yi,ai), for i = 1,. . .9, given by (�D,�D,0), (�D,0,p), (�D,D,0), (0,�D,0),

(0,D,0), (D,�D,0), (D,0,p), (D,D,0), (0,0,p + o). The corresponding particle density Z(D) for these particle configurations is the same reported in Appendix C
for the lattice unite cells of phase x and s, respectively. The ai = 0 orientation of each i-th particle is defined as in Appendix C for the lattice phases. The
remaining degrees of freedom of the particle configuration (i.e. ji, ci, zi, for i = 1,. . .7 and i = 1,. . .9, respectively) are fixed by the values found in Section III
A for a single-adsorbed particle. In the graphs shown here, the squares are the values of C, for the various particle phases, obtained by fitting EN(o)� EN(o = 0)
with U(o) [eqn (20)], see Fig. S9–S12 of the ESI.† The full lines represent a fit of our numerical data with A�e�B/Z, where A and B are the fit parameters (and their
values, obtained from the fit, are reported in Table 5). The vertical dotted lines indicate the close-packed density, i.e. when the particles are at their contact
distance, for the honeycomb lattice (phase h, in green), for the square lattice (phase s, in blue), and for the hexagonal lattice (phase x, in pink). Here, C is
plotted in units of Sg, with S the total surface area of one particle and g the fluid–fluid surface tension.

Table 5 Parameters Aa and Ba (a = h, s, x) obtained by fitting with Aa�e�Ba/Z

the values of the rotational spring constant C computed for various Z (see
Fig. 12), where the subscripts h, s, and x indicates the particle phase in
which C was computed, S is the particle total surface area, and g is the
fluid–fluid surface tension. The particle shape is (a) a sharp-edge cube,
(b) a smooth-edge cube, (c) a slightly truncated-edge cube, and (d) a highly-
truncated edge cube

Ah/(Sg) Bh As/(Sg) Bs Ax/(Sg) Bx

(a) 9.874 1.000 20.121 1.455 63.782 2.141
(b) 17.308 1.372 39.269 2.095 32.567 2.345
(c) 4.062 1.160 2.238 1.152 2.640 1.181
(d) 2.244 1.313 1.299 1.286 2.748 1.598
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the fluid hard disk free energy Ffhd [eqn (18)] in the entropic
free energies F(h)

S [eqn (15)] and F(s)
S [eqn (16)] of the particle

phases h and s. The result is almost identical to the phase
diagram shown in Fig. 6(b).
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